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Configurational properties of self -interacting linear polymer 
chains in a three-dimensional continuum: I. End-to-end 
probability and molecular span 

Clive A Croxton 
Department of Mathematics, University of Newcastle, Newcastle, NSW, 2308 Australia 

Received 16 January 1979 

Abstract. A diagrammatic method of comparable status to the exact enumeration machine 
techniques is developed for the determination of the configurational properties of isolated 
self-avoiding polymer chains of freely jointed hard sphere segments. A close upper bound 
on the exponent in - n y  is determined to be 1.26 > y > 1.0, which is a substantial 
improvement upon earlier diagrammatic analyses ( y  = 2.0). Moreover, the end-to-end 
distribution function has a non-zero contact value, indicating the possible development of 
closed ring configurations-again contrary to earlier diagrammatic analyses. 

1. Introduction 

Despite general agreement on the properties of self-avoiding walks on regular lattices, 
it is nevertheless apparent that dimensionality, flexibility and connectivity play an 
important role. Monte Carlo simulations of such systems, together with exact enu- 
meration techniques, seem to suggest that for long chains of N segments asymptotic 
behaviour of the mean square end-to-end separation varies as ( R i )  = an”, where 
n = N - 1 is the number of links, a is a constant dependent only on link length and the 
nature of the lattice, while y is a constant exponent dependent only on the dimen- 
sionality. The mean square radius of gyration appears to exhibit a similar limiting 
dependence (Si) = bn”’, where b and y f  are again constants depending on the lattice 
and the dimensionality respectively. Moreover, machine studies strongly suggest that 
y = y f  - 1.2 for a three-dimensional walk on a regular lattice. Recently, Morita (1976) 
has analytically investigated the conventional self-avoiding walk for a class of general- 
ised Bethe lattices, obtaining the exact result y = 2. Clearly, both the dimensionality 
and the connectivity of the space essentially modify the asymptotic behaviour-indeed, 
in the asymptotic limit N + 00 the Bethe lattices become effectively of infinite dimen- 
sion. Nonetheless, the apparent independence of the three-dimensional machine 
investigations on the nature of the lattice suggests that y may be a universal constant, 
and that the conclusions bear extension to three-dimensional continuum systems 
incorporating excluded volume effects. Indeed, Edwards (1965), working in a mean 
field approximation which incorporated excluded volume effects, found ( R  :) = 
l * ( ~ / l ~ ) ~ ’ ~ n ~ ’ ~ ,  where 1 is the segment length and v the excluded volume per segment. 
This formula has limiting validity as n >> 16/v2, and is seen to be of the form reported on 
the basis of lattice studies. Reiss (1967), using a somewhat similar approach, found 
y = J; however, a refinement due to Yamakawa gave y = 4. 4 
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Increased computing capabilities have permitted the Monte Carlo investigation of 
off-lattice configurations, and initial complacency has given way to some concern that 
the lattice results do not bear even qualitative extension to continuum polymer systems 
(Edwards 1970). For example, there is a considerable body of evidence which suggests 
that the exponent y is a function of excluded volume. We do have the exact result for 
zero excluded volume ( y  = l ) ,  and while Edwards’ result can, in principle, shed no light 
on the matter, the question as to how the transition in the exponent between non-zero 
and zero excluded volume is accomplished is not at all clear. Fleming (19671, for 
example, finds a steady decrease in y with excluded volume on the basis of Monte Carlo 
investigations, smoothly approaching y = 1 as the excluded volume tends to zero, and 
attaining the lattice exponent only beyond some critical value of the excluded volume. 
Grishman (1973) also reports an off-lattice exponent in close agreement with the lattice 
results for spherical segments. It is apparent that the dependence or otherwise of the 
exponent y upon excluded volume requires further investigation and cannot be 
imputed from the lattice results. Again, machine evidence seems not inconsistent with 
the conclusion y = y‘ for lattices: the same conclusion cannot yet be drawn regarding 
continuum systems, and certain investigators appear to find y f y’ for off-lattice 
self-avoiding walks (Smith and Fleming 1975a, b). 

While there appears no chance of an exact analytical solution of the excluded 
volume problem in polymers, nevertheless there have been a number of theoretical 
models yielding a variety of quantitative and qualitative results with which the machine 
studies may be compared. We have already mentioned the results of Edwards and of 
Reiss (modified by Yamakawa), both of which suggest y = 9,  but which appear difficult 
to reconcile with the substantial body of ‘experimental’ data, which seems to suggest a 
different exponent which, moreover, is dependent on excluded volume. It may be, 
however, that substantially longer Monte Carlo chains would modify this conclusion. A 
Percus-Yevick (PY) treatment of the excluded volume problem in polymers by Curro et 
a1 (1969) suggests a strong dependence of the exponent y on excluded volume, ranging 
from y = 2 for spherical segments to y = 1 for zero excluded volume. While y = 2 
represents a substantial overestimate of the N dependence of the mean square 
end-to-end separation, it nevertheless provides support for an excluded volume 
dependent exponent. Unfortunately, this particular development utilising the PY 
approximation, which has proved so useful in the theory of fluids, yields some 
qualitatively incorrect results in the case of polymers. For example, the end-to-end 
contact probability is found to be zero, prohibiting the development of closed rings, 
which are known to occur. Moreover, the complicated interaction amongst the 
diagrammatic subsets retained in the graphical expansion of the partition function 
prohibits even a qualitative assessment of the approximation, and certainly provides no 
means of systematic refinement. 

A further variety of analytical approaches has yielded a corresponding variety of 
exponents y (Alexandrowicz 1967a, b, des Cloiseaux 1970, Whittington and Dunfield 
1973). In each case both the qualitative and quantitative features are obscured by the 
approximation, and it proves difficult to assess their effect. Nevertheless, collectively 
they provide a useful complement to the machine investigations. 

Since we are necessarily resigned to approximation, the most we can hope from a 
theory is one which provides a degree of quantitative (perhaps in the form of lower or 
upper bounds) and qualitative insight, and whose approximations, moreover, bear 
assessment and do not consist of virtually inscrutable associations of cancelling errors. 
In this paper we present what we believe to be a simple theoretical model which satisfies 
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the above criteria, yielding quantitative and qualitative conclusions whose status is 
somewhat similar to that of the exact enumeration technique, reported for lattice 
investigations, which has proved of considerable use in estimating the qualitative and 
quantitative features of much longer chains (Domb 1969, Rapaport 1976). 

2. Diagrammatic expansion of the partition function 

We consider a perfectly flexible chain of N spherical segments (n = N - 1 links) which 
interact through the potential 

for non-adjacent elements and 

for adjacent elements. The non-adjacent segment-segment interaction is taken to be of 
hard sphere form, while the S interaction between adjacent segments preserves their 
sequential order. The total potential of the chain is then 

The unnormalised distribution function is defined in the usual way as 

Inserting (2) in (3) we have 

We now introduce the function 

Hii = 1 - hii = exp(-@(rij)/kT), 

whereupon (4) may be diagrammatically expanded and regrouped to yield 

that is, as a sum over zero, one-, two-, . . . , n-loop graphs. where a straight bond 
represents a S bond and a loop represents the h function. 

Thus the end-to-end distribution ( 5 )  may be expanded from the partition function as 

where the li diagrams represent the sum of all graphs of i loops, except those with an 
htN loop arising in the partition function for a chain of N subsystems. 
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In this diagrammatic expansion two classes of diagram arise: the nodal N1N and 
elementary E 1 N  classes. We may therefore write 

ZIN = N I N  +EIN,  (7) 

where the class N1N is characterised by the development of one or more nodes or 
articulation points within the diagram at which a cut would cause the graph to separate 
into two or more completely disconnected components. The class E 1 N  is simply the 
non-nodal residue of Z I N .  Curro et a1 (1969), working in what is essentially the PY 
approximation, are able to generate many of the elementary diagrams from the 
diagrams; thus they write for the elementary diagrams of order i 

Ei (IN) - h 1 N l i  - 1 ( 1 N )  (8) 
and then 

(N;l) 

ET:- 1 ~j( lN)( - l )~ .  

Clearly, in this approximation only those elementary diagrams having an hlN loop will 
be generated. Moreover, it is straightforward to show (Curro et aZ1969) that this subset 
of diagrams may be written 

However, there remain unaccounted for all those elementary diagrams which do not 
have an hlN bond. We may generate these by taking the zero-order 5 diagram lo(lN) 
consisting of N - 1 = n unit links which are non-avoiding, and then permuting 1 up to 
some maximum number, [ of h bonds on this Lo(lN) framework, with the restriction 
that no h l ~  bond is included. 

It may be shown quite easily (Croxton 1974), when due account is taken of the 
topological degeneracies and the sign of the diagrams, that the derivatives of the CO 
diagram self-interfere to yield a fully netted residue where each vertex i is linked to 
every non-nearest vertex k by a 1 - h i k  bond. Two separate proofs of this central result 
are given in appendixes 1 and 2. 

These fully netted Lo(lN) diagrams will, however, generate not only the elementary 
diagrams neglected in the PY approximation, but also the nodal diagrams, which have 
been already incorporated. So, at order N = 5 ,  for example, the neglected elementary 
residue g 1 N  is 

and the total elementary contribution is 

Combining equations (7), (9) and ( l l ) ,  we immediately obtain the exact result 

which is in retrospect self-evident since (12) expresses the geometrical exclusion 
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operating amongst the segments constituting the polymer. Clearly, these diagrams are 
positive and non-zero at r1N = 1.0, and tend to zero as r lN  tends to its maximum range 
(N - 1)a. Analogous diagrams, i.e. fully netted & ( l N )  exclusion graphs, describe each 
of the higher-order distributions Z I N .  The problem therefore reduces to the evaluation 
of these exclusion diagrams. 

Since PY yields the exact distribution for N = 3, the first diagram to be considered 
arises at N = 4, and we have 

which may be readily evaluated numerically. As we shall see in the next section, on the 
basis of this diagram we obtain the exact mean square length (R:4 )  = 4.31  which is to be 
compared with the result of Curro et ul, (Rf4)pY = 4.50. 

At higher orders, numerical evaluation of the fully excluded diagram becomes 
prohibitively difficult and computationally impracticable. We have therefore approxi- 
mated the distributions by two convolution models designated Z : ,  and Z?V. In each 
case the normalised distribution Z I N  is approximated by a normalised nested con- 
volution: Z I N  - ( 1  - hi,) Z1,N-1&V-I.N d(N - 1); in the case of Z:!N the convolution 
is started from the exact (numerically determined) Z14. In this way the dependence of 
the lower-order distributions on the omission of exclusion bonds can be assessed. In 
principle a series of convolutions may be developed in parallel, assuming we have the 
exact initial distributions 2 1 5 ,  Z I 6 ,  . . . . In fact, these lower-order distributions are 
currently being developed numerically using the Ree-Hoover techniques which were so 
successful in the evaluation of the hard sphere virial coefficients. Pad6 approximants 
may also be formed. 

We may compare the approximations explicitly for N = 5 :  

Q Z A  = ( 1  -his) J ( 1  - hi41 J 213634 d3&5 d4, (13a) 

Z15 (exact) 

It is straightforward to show that, in such a nested convolution model in which the 
highest exact distribution is of order r, the fraction of bonds omitted in the distribution 
Z I N  will be 1 - r / (N - 1 ) .  Thus in Z : ,  the fraction omitted is 1 - 2 / ( N  - l ) (n  2 21, 
while for Z:; it is 1 - 3 / ( N  - l ) ( n  2 3) .  Clearly, both Z : ,  and Z:!N will tend to the zero 
excluded volume result as N + w ,  i.e. y +  1 as N + w .  Both these convolution 
approximations may, of course, be readily evaluated by fast Fourier transform tech- 
niques. It is clear that the convolution approximations, in neglecting several of the 
internal exclusion bonds, will permit unphysical ‘over-collapsed’ configurations to 
contribute to the probability distributions and the (R:,). However, the convolution 
approximation is quulitutively correct at intermediate N. Moreover, the effect will be 
cumulative as N increases. Nevertheless, the approximation is not quite as serious as it 
might at first appear, since we are interested in the higher moments of these dis- 
tributions, e.g. (R i), and these will be more sensitive to the extended configurations of 
the exclusion diagram which, fortuitously, predominantly sample those regions of space 
incidentally satisfying the complete exclusion condition. 
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The PY approximation may be readily shown consistently to overestimate the 
molecular span, for equation (7) may be written 

Z ~ N = N I N + E ~ N = N ~ N - ~ ~ N N ~ N - ~ ~ N W ~ N + W ~ N  

= (1 - h i ~ ) N i ~  + (1 -hiN)WiN, (14) 
where hlNNIN represents those elementary diagrams formed by applying an hlN bond 
across a nodal diagram (which reverses its sign), while hlNWlN, WIN represent those 
non-nodal diagrams with and without hlN bonds respectively, and these complete the 
set of elementary graphs. 

Now the PY approximation sets hlNWIN +WIN = 0-while this is true for T I N  < U, it 
is not true for > U and requires W 1 ~  = 0. The only condition for this to be the case is 
in the fully extended configuration, and so the PY approximation incorporates these 
elementary diagrams insofar as they are fully extended. Consequently, the end-to-end 
distribution function is radially shifted outwards and is zero in the end-to-end contact 
configuration. The situation is exacerbated in the determination of the higher 
moments, e.g. (I?:), and may be expected to overestimate substantially the mean square 
lengths. 

3. The end-to-end probability distributions ZIN 

The normalised probability distributions 4m:NZ(rlN) in the various approximations 
are compared in figure 1 for various N. For N = 4 the distribution 2;; is exact. The 
netted ring convolutions are seen to be qualitatively distinct from the PY distributions 
of Curro et al. The end-to-end contact probabilities ZlN(u) are seen to be non-zero in 
the former case, while they are zero in the latter, prohibiting the development of closed 

0 8r 

rI1 

Figure 1. (continued on next page) 
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Figure 1. Normalised end-to-end probability distributions: - convolution approxima- 
tion beginning N = 4, etc; - .  - .  convolution approximation beginning N = 3, etc; - - - - 
Curro et ai's PY approximation N = 4, etc; . . . . . unrestricted random walk; ( a )  2 1 4 ;  ( b )  
Z15; ( c )  Zl.lo; (4 Z1.15; ( e )  ZI.ZO. 

ring configurations. In particular we draw attention to the fact that Z ~ ! N ( ( T )  > Z ~ ( ( T )  > 
ZTz(a) = 0 throughout, although this is most apparent for shorter chain lengths. The 
peak in the PY distributions is consistently overdeveloped and shifted outwards with 
respect to the two convolution approximations, both of which become coincident as N 
increases. In consequence, the PY approximation may be expected to overestimate 
substantially the mean square end-to-end separation, implying as it does an over- 
rigidity in the system. The Zlo distribution for unit rods (E = 0) is also shown for 
comparison. 

We point out that the higher-order convolution distributions become progressively 
collapsed with respect to the exact (but unknown) distribution, while the PY dis- 
tributions become over-extended. 
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4. The mean square end-to-end distance (Ri) 

As we mentioned in the Introduction, the relevance of Monte Carlo and exact 
enumeration studies of the self-avoiding walk on regular lattices to the continuum 
problem is not obvious. Connectivity and dimensionality play an important role; for 
example, the Ising model exhibits mean field behaviour on tree lattices, but on regular 
lattices shows interesting non-classical behaviour. 

Monte Carlo investigations for a continuum polymer chain have been made by 
Fleming (1967), who finds that the exponent y in 

(Ri) = an', n = N - 1 ,  (15) 

appears to increase with the excluded volume ratio e, and suggests that the generally 
assumed value y = 4 is attained only for e b 0.5. This effect may, however, disappear for 
chains of length impracticable for machine simulation. Certainly the excluded volume 
ratio E must have an effect on the exponent and is not entirely contained within the 
constant a as assumed, for example, in Edwards' mean field theory. This is apparent 
from the result for E = 0 (zero excluded volume-hinged rod polymer) for which both 
the convolution models and the PY model of Curro et a1 yield the known result y = 1 
(while that of Edwards does not), and show an increase of y with E .  Fleming finds a 
relatively weak dependence of y on E for his Monte Carlo simulations, while Curro eta1 
find a much stronger dependence on the excluded volume ratio ( E  = 0, y = 1; E = 1, 
y = 2). Of course, in the present netted ring convolution approximation we would 
expect the exponent to tend to the zero excluded volume result ( y  = l ) ,  since the 
fraction of exclusion bonds omitted increases with N, and this we see in figure 2. We 
have made the usual linearisation of the exponent relation (15), 

Y,, = n( (R?N) / (Rh- l ) -  11, (16) 

where y,, is the exponent estimated on the basis of the two consecutive mean square 
molecular spans and (R;). The PY curve is also shown and is seen to exhibit a 
quite distinct behaviour. 

While we cannot make a numerical estimate of the asymptotic value of y, since the 
model degenerates to the zero excluded volume system as n + CO, the results neverthe- 
less strongly suggest that 1.33> y > 1.0- an unremarkable conclusion, but nonethe- 
less an improvement on the PY result. Confidence in this result is based on figure 2 ( a ) ,  
which shows the exact curve for U = 0, and the U = 1 result on the basis of the present 
convolution approximation. Since we know qualitatively that y ( ~  = 1) > y(a = 0) at all 
orders, it follows that the only qualitatively correct region of the U = 1 curve is that which 
lies above the U = 0 curve, the intersection occurring at y = 1.33. Of course, this 
represents an upper limit on the exponent for the self-avoiding system. We may obtain 
a better estimate by forming an extrapolation as follows. Knowing ( R : N )  on the basis of 
the approximations Z : ,  Zik and ZYN (zero excluded volume), which represent 
fractions 1 - 2/ (N - l ) ,  1 - 3 / ( N  - 1) and 100% of the bonds missing respectively, we 
may fit a quadratic curve to yield an estimate of for 0% bonds omitted. Clearly 
this is likely to be of any accuracy at all only for small N. However, this is just the region 
in which we shall form our upper bounds on the estimate of y. In figure 2(b) we show the 
U = 0 and U = 1 (extrapolated) curves, and we see that we are now able to propose 
1.26 > y > 1-0-a result in closer agreement with other determinations. Incidentally, 
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Figure 2. ( a )  Comparison of various yn estimates. 
( b )  Extrapolated estimates of yn. (c) Comparison 
of mean square end-to-end distance against degree 
of polymerisation (U = 1) in the convolution 
approximation and the PY approximation of Curro 
er al. The convolution estimates for U = 0.5 ,O are 

N also shown. 

we should point out that in figures 2 ( a )  and (b) the U = 1 curve dips below y = 1 before 
attaining its asymptotic value of unity, since the ln(R:N) against In n curve has an initial 
slope y > 1 for small n. 

Certainly y = 2 as predicted by PY is too great. Confidence in these relatively short 
chains is based upon the agreement found between the exact enumeration and Monte 
Carlo studies; the suggestion of Flory and Fisk that asymptotic behaviour will not set 
until N > lo6 has been refuted in a number of studies. 

Although there was some evidence of a dependence of y on E, given the nature of the 
approximations it was felt that no useful conclusions could be drawn at this stage. 

The ‘numerical noise’ in these investigations is very small; the exact PY exponents 
for E = 1.0 ( y  = 2) and E = 0 ( y  = 1) were reproduced by the same numerical procedures 
to within ztO.0001. 
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5. Conclusions 

On the basis of a diagrammatic approximation, a close upper bound on the exponent y 
was determined to be y s 1.26 for relatively short flexible three-dimensional polymer 
chains having hard sphere segments of excluded volume ratio E = 1. The dependence of 
this exponent on E appears much weaker than that predicted by Curro et al, on the basis 
of a PY approximation to the excluded volume problem. The end-to-end probability 
distributions are qualitatively different to those of the PY analysis, being radially 
collapsed, of smaller amplitude, and having a non-zero end-to-end contact probability, 
suggesting the possible development of closed ring configurations. Although the 
present probability distributions are radially collapsed with respect to the exact (but 
unknown) functions, they are nevertheless believed to be qualitatively correct, 
degenerating to the zero excluded volume results as N + 00. 
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Appendix 1. Identification of ZIN with the fully netted vertex graph 

The elementary graphs neglected in the PY approximation are those non-nodal 
diagrams with a 1 - h l N  exclusion bond (see equation (8)). At any given order N > 3, 
these ma l  be generated from a l0(1N) diagram by permuting 0 up to a maximum 
number, I ,  of h bonds between non-adjacent vertices. 1 will depend on the order N. It is 
straightforward to show that, since the h bonds are of range U for hard sphere segments, 
and are of value 0 or 1, and that the sign of the resulting diagram is (-1)' if 1 bonds have 
been applied to lo, then the net value of the diagrammatic interference amongst the 
derivatives is 

(-l)'l! 
50(1N)( 1 + 1=1 c -). l ! ( l - l ) !  (Al.  1) 

Note that this result holds only if every vertex is within the range U of every other 
vertex. If that is the case, then the Z term may be recognised as the binomial coefficient 
in the expansion of ( x  - 1)-* with x set to zero. Provided this condition is met, then all 
the diagrams self-interfere completely and (Al.  1) is identically zero. If the range of one 
or more of the inter-vertex h bonds exceeds U, then the contribution of the derivatives is 
zero and (Al . l )  reduces to lo(lN). The derivatives of order N may therefore be 
expressed as fully netted 50(1N) graphs with exclusion bonds 1 - h operating between 
all non-adjacent vertices. We have, however, inadvertently included the nodal 
diagrams in the prescription, which we subsequently subtract out; an example at order 
N = 5 is given in equation (10) er seq., resulting in the simple exclusion netted ring 
representation of Z15 in (12). 
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Appendix 2. An alternative derivation of the result in appendix 1 

We first note that for an N-segment polymer chain there are (Y) = y- 1) 

pairs of segments which may interact. Of these, N - 1 pairs interact through S bonds, 
leaving N(N - 1)/2 - (N - 1) = (N - 1)(N - 2)/2 possible distinct h bonds. For nota- 
tional convenience we set M = (N - 1)(N - 2)/2. 

The set of all diagrams of order N is equivalent to the set of all subsets of the set of 
possible h bonds, and this set has exactly 2M elements. In fact, if we first order the set of 
h bonds, we can then denote each diagram by an M-bit binary number which has the ith 
bit = (1 if the diagram contains the ith h bond, 0 if it does not}. Note that there are 
exactly 2M M-bit binary numbers, so we obtain the ‘full set’. 

Now sum the diagrams by combining the binary numbers according to the following 
rules: 

(i) only two numbers at a time are combined, and the two numbers to be combined 
must differ in exactly one bit, which is 1 in one number and 0 in the other; 

(ii) the ‘sum’ of the two numbers has an x (for a 1 - h bond) in the bit where the two 
summands differ, and is the same as the summands in all other bits; 

(iii) the resulting numbers (containing 03, 1’s and x’s)  may be recombined using the 
same rules. 

By induction on the number of bits, any ‘full set’ of binary numbers (i.e. any set 
containing all 2’ p-bit binary numbers) summed according to the above rules adds to a 
single number, every bit of which is an x. Clearly, for p = 1 , O  and 1 combine to x. For 
p > 1, first combine pairs which differ only in the pth bit. This leaves 2’-’ numbers, each 
of which has x in the pth bit and a (distinct) (p  - 1)-bit binary number in the rest. By 
inductive hypothesis the ( p  - 1)-bit numbers combine to all x’s ,  and the x in thepth bit is 
unchanged, giving a p-bit number of all x’s, i.e. exclusion bonds, and the identification 
with Z I N  is again established after the nodal diagrams have been subtracted. 
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